Appendix 1

1. Natural variation of carotene and vitamin C in fruit and vegetables and contribution to dietary intake

The concentrations of certain vitamins in some fruits and vegetables may be affected by irradiation but it is important to recognise that the natural variation in vitamin content in fruits and vegetables is very large. Vitamin levels depend on the plant cultivar, growing conditions, maturity of the edible portion, post-harvest handling and storage conditions (World Health Organization 1994). On this basis, changes in the concentrations of vitamins observed in individual studies must be interpreted in the context of this variation. To this effect, a quantitative review of natural variation in the content of radiation-sensitive vitamins is provided for pome, stone, berry, citrus, tropical and other fruits, as well as cucurbit and flowering vegetables. Where appropriate, the effect of common processing techniques on carotene and vitamin C content is included.

Published data were searched using EBSCOhost. The search strategy involved searching combinations of the specific fruit or vegetable name with the following terms:

- Cultivar; storage; season; processing
- Ascorbate; ascorbic acid; vitamin C
- Carotene; carotenoid; vitamin A
- Folate
- Vitamin E or tocopherol
- Nutrient variation

Hand searching of reference lists was also used to extend publications included in the review. References and data were cross-checked with the Food Composition Database for Biodiversity developed by FAO (StadImayr et al. 2011).

The purpose of this section was not to provide a systematic review of all available data. Instead, the aim was to capture the extent of natural variation in nutrient composition of fruits and vegetables that is present in the published literature.

Terminology and abbreviations used in this appendix include:

- Vitamin C terms
 - AA: ascorbic acid (reduced form)
 - o DHAA: dehydroascorbic acid (oxidised AA)
 - Total vitamin C: value represents both AA and DHAA.

- Vitamin A terms
 - \circ β -carotene: pro-vitamin A carotenoid
 - β-carotene equivalents: estimated using the following formula: β-carotene (µg)
 + α-carotene/2 (µg) + β-cryptoxanthin/2 (µg)
 - Carotene: non-oxygenated carotenoid
 - Carotenoid: hydrocarbon pigments synthesised by plants
 - Retinol equivalents¹: calculation of total vitamin A activity of a food. Estimated using the formula: retinol (μg) + (β-carotene/6 + α-carotene/12 + β-cryptoxanthin/12 (μg)).
- Other
 - HPLC: high pressure liquid chromatography
 - NUTTAB: nutrient tables for food available in Australia
 - o USDA: nutrient tables for food in the US

1.1. Pome fruits

In Australia and New Zealand, pome fruits were not major contributors to dietary intakes of carotene or vitamin C, with the exception of vitamin C intakes in 4-8 year old boys (6% of dietary intake) and 9-13 year old girls (5% of dietary intake) in New Zealand. Pome fruit contribute 5-8% of dietary folate intake in Australian children <16 years of age, but not other population groups. Pome fruit did not contribute to >5% of dietary intakes of thiamin, riboflavin, niacin, vitamin E or B6.

As detailed in Table 1.1.1, raw apples and pears contain relatively low levels of both carotene and vitamin C, but the reported levels show a large range with up to 4-fold variation between cultivars. While the majority of pome fruits are consumed raw, a proportion of apples and pears are cooked or canned before consumption. Carotene levels tend to be higher in cooked apples, but the effect on vitamin C levels was mixed; in Australian and US food composition tables vitamin C was not detected or very low in cooked (baked or boiled) apples. In contrast, New Zealand food composition data showed 50% more vitamin C in stewed apples. The effect of canning on pears was more consistent, with vitamin A not detected, and vitamin C decreasing 66-83%. However, due to differences in the time that samples were collected and analysed, the validity of direct comparisons is limited in this case.

Published data on different apple cultivars found vitamin C level ranged from 0.4-35 mg/100 g, with lower levels in early-harvest fruit and higher levels in later-harvest fruits (Table 1.1.2) (Davey and Keulemans 2004; Vrhovsek et al. 2004; Lata 2007; Kevers et al. 2011). In the Davey study (2004), storage of apples at room temperature for 10 days led to 35% loss of

¹ For an alternate approach, calculating Retinol Activity Equivalents (RAE), please see the "DRI Essential Guide to Nutrient Requirements" (2006), available at http://www.nap.edu/openbook.php?record_id=11537&page=170

vitamin C, and cold storage (1°C) for 3 months decreased vitamin C by 23%. Greater losses were reported by Kevers (2011), with up to 75% of AA lost during 7 days storage at room temperature, and up to 90% lost with 3-9 months cold storage in either air or low oxygen atmosphere. The greater losses reported by Kevers et al. may be due to estimation of AA only, and the use of the titrimetric method of analysis. These large storage-associated losses may explain why vitamin C values in food composition tables lie at the low end of the range. For example, data for some apple varieties in Australian data tables (NUTTAB 2010) were store bought, and therefore may have undergone extended storage.

Emit	β-carotene (μg/100 g)		Vitamin C (mg/100 g)		
Fruit	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA
Apple	0-19	11	2-6	8	5
Apple (cooked)	90	39	0	12	<1
Pear	0-20	0-10	4-6	3	4
Pear (canned)	0 ^b	0-15 ^c	1 ^b	1 ^c	1 ^b

Table 1.1.1 β-carotene and vitamin C contents of raw and processed pome fruits

^aWhere values are provided for different varieties a range is given. ^bDrained fruit canned in either juice, syrup or intense sweetened liquid. ^cUndrained fruit canned in either juice or syrup

Vitamin C content in apples also varied with season, with the effect of season being cultivar dependent (Lata 2007). While the mean and range vitamin C content was similar overall, 10 of 19 cultivars exhibited lower vitamin C levels in the 2004 season (-10 to -47%), 7 of 19 had greater levels (+9 to +46%), with the remaining two cultivars having similar vitamin C content between seasons. In addition, vitamin C content varies with fruit position within the tree; vitamin C levels were 21% lower in peel and 24% lower in flesh of shaded compared to sun exposed Gala apples (Li et al. 2009).

Vitamin C content of seven pear cultivars ranged from 5-30 mg/100 g (Silva et al. 2010; Kevers et al. 2011). Vitamin C levels decreased with fruit maturation in Conference pears, with ~3-fold reduction during on-tree maturation, and levels continued to decrease during post-harvest storage (Franck et al. 2003). At harvest, vitamin C concentration was ~6 mg/100 g, but after 3 weeks storage it decreased to 1-3 mg/100g, depending on storage conditions and remained in this range up to 7 months after harvest. Similar effects of storage and maturity were observed in Rocha pears, with minimal effect of post-harvest treatments on AA losses (Silva et al. 2010). In Conference pears, no seasonal effect was observed for vitamin C content (Franck et al. 2003). Table 1.1.2 Summary of data from published literature on variation in vitamin C (mg/100 g) content of whole pome fruit with variety, season and storage.

Study	Variety	Season	Storage
31 apple cultivars. AA, DHAA and total vitamin C analysed at harvest, after 10 days at ambient temperature and after 3 months at 1°C. AA and DHAA by HPLC. Davey, 2004	<u>Total vitamin C</u> At harvest: Mean: 12.7 Range: 7.1-25.5	Not determined	<u>Total vitamin C</u> Ambient: Mean: 8.3 (-35%) Range: 1.9-23.1 Cold Storage: Mean: 10.3 (-19%) Range: 2.8-28.0
19 apple cultivars. Total vitamin C measured in 2 consecutive seasons by derivatization. Łata, 2007	See adjacent season column.	<u>Total vitamin C</u> Mean (range) 2004 (hot, dry): 12.0 (5.9-24.2) 2005 (hot): 11.6 (4.5-25.0)	Not determined
8 apple cultivars. AA measured by HPLC. Vrhovsek, 2004	<u>AA</u> Mean: 4.1 Range: 0.4-8.1	Not determined	Not determined
4 apple cultivars. AA by titration method. Bhusan, 1998	<u>AA</u> Mean: 2.6 Range: 1.5-3.3		<u>AA</u> 6 months, 2-4°C: Mean: 0.7 (-69%) Range: 0.4-1.5 (-30% to -89%)
14 apple and 6 pear cultivars. AA measured at harvest and after storage, with effect of season assessed in select cultivars. <i>Changes estimated from</i> <i>graphical data.</i> AA by titration method. Kevers, 2011	<u>AA at harvest</u> Apples: Mean: 23.8 Range: 11.6-35.3 Pears: Mean: 18.8 Range: 7.5-29.7	Not determined for AA, but phenolics and antioxidant capacity differed by \sim 15% to \sim 65%. No significant effect of harvest time within a season	<u>AA in apples</u> 7 days, 20°C: -75% 3-9 months, 1°C: -70% to -90%
Conference pear cultivar. Vitamin C measured during ripening and storage in air or controlled atmosphere (CA). <i>Changes estimated from</i> <i>graphical data.</i> AA and DHAA by HPLC. Franck, 2003	Not determined	Total vitamin C similar (Harvest season 2001 and 2002)	<u>Total vitamin C</u> 3 weeks post- harvest: On tree: -40% Air, -1°C: -55% CA, -1°C: -75%
Rocha pear cultivar. AA, DHAA and total vitamin C measured at early, optimal and late harvest, and throughout 240 days	Not determined	Not determined	Total vitamin C At harvest: 5.2-6.6 At 240d: ~4 (-20- 40%) Minimal effect of

Study	Variety	Season	Storage
storage.			post-harvest
AA by derivatization.			treatment
Silva, 2008			NB: estimated from
			graph

In summary, there is a wide range of vitamin C levels in different pome fruit cultivars, and while some are susceptible to seasonal variations, the overall differences between seasons appears limited. In pome fruit, total vitamin C content decreases rapidly after harvest, and these storage-associated changes may underlie the relatively low values for vitamin C content for pome fruit in nutrient data tables. Carotenoid levels are low in pome fruits, with little published data available on the effects of cultivar, season and storage in these fruit.

1.2. Stone Fruit

Stone fruit were not major contributors to dietary intake of vitamin C, folate, thiamin, riboflavin, niacin, vitamin E or vitamin B6 in any of the age or gender groups studied in Australia and New Zealand. Similar results were found for carotene, with the exception of New Zealand females aged 19-29 and 50-69; in these groups stone fruit contributed to 5% of dietary carotene intake (expressed as β -carotene equivalents).

Data from food composition tables indicates a wide range in β -carotene and vitamin C content for different stone fruits (see Table 1.2.1). In canned stone fruit, carotene levels are generally similar, whereas vitamin C levels decrease >40% and in some cases by >90%. However, some of these differences, in particular in carotene levels, may be due to the different cultivars and stage of ripeness used for canned stone fruits.

Emit	β-car	otene	Vitamin C		
rruit	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA ^a
Apricot	197	5170	12	7	10
Apricot (canned)	590-1750 ^b	800 ^c	4-5 ^b	4 ^c	3 ^d
Cherry	56	26	19	20	7
Nectarine	65	362	12	4	5
Peach	147	477	9	10	7
Peach (canned) ^b	216-360 ^b	617 ^c	3-10 ^b	4 ^c	1 ^c
Plum	147	417	5	3	10
Plum (canned)	130 ^c	479 ^c	0 ^c	2 ^c	<1 ^c

Table 1.2.1 β -carotene (μ g/100 g) and vitamin C (mg/100 g) contents of raw and canned stone fruits

^aWhere values are provided for different varieties a range is given. ^bRange presented for drained fruit canned in either juice, syrup or intense sweetened liquid. ^cDrained fruit canned in heavy syrup. ^dCanned in water, solids and liquids

As detailed in Table 1.2.2, studies of vitamin C levels in stone fruit found levels vary from 1.3fold (yellow nectarines) to >5-fold (apricots) between cultivars of the same fruit (Girard and Kopp 1998; Gil et al. 2002; Hegedüs et al. 2010). In cherries, storage was associated with decreases in AA content by up to 70-80%, with controlled atmosphere attenuating these losses (Tian et al. 2004; Akbudak et al. 2009). However, as demonstrated in a study of peaches, measurement of AA alone can be misleading. In Rojo Rito peaches, AA content decreased by 66% over 14 days ambient temperature storage, but there were concomitant increases in DHAA, with total vitamin C levels actually increasing by 10% (Flores et al. 2008).

Carotene levels also exhibit a high degree of inter-cultivar variability, with apricots showing >10-fold difference between cultivars (Ruiz et al. 2005; Flores et al. 2008), and levels varying 1.4 to 3.3-fold in cherry, nectarine, peach and plum cultivars (See Table 1.2.2) (Girard and Kopp 1998; Gil et al. 2002; Di Vaio et al. 2008). In plums, AA and total carotenoid levels increased with ripening and 3-weeks storage, but levels for both nutrients decreased after 6-weeks (Khan et al. 2009). In Rojo Rito peaches, carotenoid levels increased ~60% during 14 days storage at ambient temperature (Flores et al. 2008). Similarly, β carotene and other carotenoids increased ~2-fold with 8 days ambient temperature storage in Spring Belle peaches (Caprioli et al. 2009). β -carotene levels also increased in apricots during 14 days cold storage, with levels 27-57% higher than harvest levels (Leccese et al. 2010).

Table 1.2.2 Natural variation and effects of season and storage on carotene (μ g/100 g) and vitamin C (mg/100 g) levels in whole stone fruit¹.

Study	Variety	Season / Growing conditions	Storage
15 apricot genotypes. Vitamin C (not specified) by HPLC method. Hegedus, 2010	<u>Vitamin C</u> Mean: 8.5 Range: 3.0-16.2	Not determined	Not determined
37 apricot varieties, including white, yellow, light orange and orange- fleshed varieties. Carotenoids by HPLC. Ruiz, 2005	<u>Total carotenoid</u> Mean: 6627 Range: 1512-16500	Not determined	Not determined
29 apricot cultivars and hybrids. Total carotenoids measured spectrophotometrically. Drogoudi, 2008	<u>Total carotenoid</u> Mean: 2320 Range: 950-3780	Not determined	Not determined
5 apricot cultivars grown under integrated and organic systems at harvest and after 7 and 14 days cold storage. Carotene data presented for 2 varieties measured by HPLC. Leccese, 2010	<u>β-carotene</u> at harvest in integrated apricots: Cafona: 1153 Pellecchiella: 1680	<u>β-carotene</u> at harvest in organic apricots: Cafona: 799 (-31%) Pellecchiella: 2218 (+24%)	β-carotene Integrated (7d: 14d): Cafona: 1154: 1560 (+35%) Pellecchiella: 1840: 2505 (+49%) Organic (7d: 14d): Cafona: 915: 1261 (+57%) Pellecchiella: 2009: 2807 (+27%)
12 cherry cultivars. AA by HPLC Girard, 1998	<u>AA</u> Mean: 12.7 Range: 8.4-17.6	Not determined	Not determined
Storage of '0900 Ziraat' cherry for 30 and 60 days at 0°C, and 60 days at 0°C followed by 2 days at 20°C with controlled atmosphere (CA). Spectrophotometric determination of AA. Akbudak, 2009	AA At harvest: 24.5	Not determined	<u>AA</u> Normal air: 30d: 12.7 (-48%) 60d: 10.1 (-59%) 60+2d: 7.3 (-70%) CA (25% CO ₂ :5% O ₂): 30d: 19.8 (-19%) 60d: 17.0 (-31%) 60+2d: 13.4 (-45%)
5 cultivars for white and yellow peaches (WP, YP), white and yellow nectarines (WN, YN) and plums (25 total). AA, DHAA and total carotenoids measured 5 days after harvest by HPLC. Gil, 2002	<u>Total vitamin C</u> mean (range): WP: 7.1 (5.9-8.6) YP: 8.0 (3.8-13.3) WN: 9.5 (5.1-13.9) YN: 6.4 (5.9-7.2) Plum: 6.1 (2.6-10.7) <u>Total Carotenoids</u> WP: 12 (8-18) YP: 139 (100-207)	Not determined	Not determined

Study	Variety	Season / Growing conditions	Storage
	WN: 10 (8-12) YN: 135 (91-171) Plum: 135 (87-285)		
7 yellow peach cultivars and 5 yellow nectarine cultivars and 1 white nectarine cultivar. β- carotene measured at harvest and after 7 days cold storage by HPLC. Di Vaio, 2008	<u>β-carotene</u> Yellow peach: Mean: 48 Range: 38-62 Yellow nectarine: Mean: 32 Range: 26-37 White nectarine: 12	Not determined	<u>β-carotene</u> Peach: Mean: 45 (-7%) Range: 34-61 Nectarine: Mean: 31 (-1%) Range: 27-36 White nectarine: 9 (-27%)
Rojo Rito peaches stored for 14 days at 20° in the presence or absence of nitric oxide (NO) gas. AA and DHAA by HPLC analysis, total carotenoids by spectrophotometry. Flores, 2008	AA: 10.5 DHAA: 4.4 Total vitamin C: 14.9 Carotenoids: 2790		<u>AA</u> Air: 3.6 (-66%) NO: 5.1 (-51%) <u>DHAA</u> Air: 8.0 (+82%) NO: 7.8 (+77%) <u>Total vitamin C</u> Air: 11.6 (+10%) NO: 12.9 (+23%) <u>Carotenoids</u> Air: 4440 (+60%) NO: 4480 (+61%)

¹Studies summarised in this table are restricted to those where numerical data were presented in the publications

In summary, there is a wide range of vitamin C and carotene levels in stone fruit, as reported in nutrient data tables and published literature. AA content is susceptible to decreases with processing and storage, but it is important to consider conversion of AA to DHAA when considering these effects on total vitamin C. In contrast to vitamin C, carotene levels were generally unaffected or increased with processing and storage of stone fruits.

1.3. Berry fruit

Berries are a rich source of vitamin C, but despite this berries did not contribute >5% of dietary vitamin C intake. Similarly, berries did not constitute a major contributor to carotene, folate, thiamin, riboflavin, niacin, vitamin E or vitamin B6 intakes in any of the age or gender groups studied in Australia and New Zealand.

As detailed in Table 1.3.1, there is a large range in carotene and vitamin C levels between different berry types and in levels reported from different countries. Berries are commonly canned or frozen, with both these processes impacting on nutrient levels. Carotene is relatively stable during these processes, with the exception of an 85% decrease in canned

blueberries in Australian data. In contrast, vitamin C is generally lower in frozen berries (mean; -29%, range; -30% to -86%), with larger losses occurring in canned berries (mean; -76%, range; -46% to -90%). As for stone fruit, some caution needs to be applied in making direct comparisons between fresh and frozen or canned berries, as the effects of season, growing location and cultivar may also influence nutrient composition.

Emit	β-carotene	(µg/100 g)	Vitamin C (mg/100 g)		
TTure	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA ^a
Blackberry	150	76	38	20	21
Blackberry (canned)	n.a.	n.a.	n.a.	n.a.	3°
Blueberry	39	8	13	4	10
Blueberry (canned)	20 ^b	n.a.	2 ^b	n.a.	<1 ^b
Blueberry (frozen)	38	15	9	6	3
Raspberry	28	0	32	14	26
Raspberry (canned)	0 ^b	n.a.	5 ^b	n.a.	9 ^c
Raspberry (frozen)	26	n.a.	22	n.a.	17
Strawberry	0	6	45	46	59
Strawberry (canned)	11 ^b	n.a.	12 ^b	n.a.	32 ^c
Strawberry (frozen)	0	n.a.	32	n.a.	41

Table 1.3.1 β -carotene and vitamin C (mg/100 g) levels of fresh, frozen and canned berries.

^bDrained fruit canned in syrup. ^cUndrained fruit canned in syrup

Studies of strawberry cultivars demonstrate a strong effect of genotype on vitamin C levels, with content ranging from 23-185 mg/100 g in different cultivars (Table 1.3.2) (Shin et al. 2008; Tulipani et al. 2008; Josuttis et al. 2012; Pincemail et al. 2012). In two studies of 3 and 12 cultivars, mean AA contents were 70 and 106 mg/100 g, respectively (Josuttis et al. 2012; Pincemail et al. 2012). These values are higher than those reported in nutrient data tables for Australia, New Zealand and the US, but the values in these tables still fall within the range reported in published literature. Vitamin C content in strawberries also varied with harvest time, season, location and growing conditions (Josuttis et al. 2012; Pincemail et al. 2012).

Table 1.3.2 Natural variation and effects of season and storage on vitamin C (mg/100 g) levels in berry fruits.

Study	dy Variety Season / Growin conditions		Storage
6 blackberry cultivars.	AA	Not determined	Not determined

Study	Variety	Season / Growing conditions	Storage
AA and DHAA by titration following solid phase extraction. Thomas, 2005	Mean: 9.1 Range: 8.3-10.3 <u>DHAA</u> Mean: 1.1 Range: 0.2-2.9 <u>Total Vitamin C</u> Mean: 10.1 Range: 8.4-11.9		
13 raspberry cultivars and 2 experimental genotypes harvested from 3 growing sites in 3 consecutive years. AA by LC-MS Pirogovskaia, 2012	<u>AA</u> (12 cultivars) Mean: 20.9 Range: 7.0-40.6	<u>AA</u> Season: Mean (range) 2008: 13.7 (7.0-24.5) 2009: 23.4 (11.3-40.6) 2010: 25.6 (14.6-34.1) Site: Genotype 36: 27.1- 35.3 C. Delight: 20.5-21.6 Malahat: 23.1-37.6	Not determined
11 wild raspberry genotypes and 1 commercial cultivar harvested over 2 years. AA by commercial assay Tosun, 2009	<u>AA</u> Mean: 28 Range: 21-36	No significant effect of year (data not shown): pooled data presented	Not determined
4 raspberry cultivars. Assessed at harvest, after 1 day at 20°C and after 3 days at 2-4°C + 1 day at 20°C. AA by titration. Krüger, 2011	<u>AA</u> Mean: 29.0 Range: 18.3-33.3	Not determined	<u>AA</u> 1d: 28.7 3+1d: 28.3 Not significant
5 commercial strawberry cultivars and 4 experimental genotypes. AA by HPLC. Tulipani, 2008	<u>AA</u> Range: 23-47	Not determined	Not determined
3 strawberry cultivars, 4 locations and 2 consecutive years. AA by titration. Josuttis, 2012	<u>AA</u> Mean: 70.1 Range: 36.5-98.0	<u>AA</u> Season: Mean (range) 2008: 64.8 (36.5-88.7) 2009: 74.2 (46.8-98.0) Site: Range (no. of sites) Elsanta: 74.2-91.6 (4) Korona: 50.8-57.8 (3) Clery: 65.2-80.0 (2)	Not determined
12 strawberry cultivars grown under various conditions and harvested	<u>AA</u> Mean: 105.9 Range: 51.0-184.7	<u>AA</u> Elsanta cv., different growing conditions	Not determined

Study	Variety	Season / Growing conditions	Storage
(1) at various times within a growing season ad (2) in 2 consecutive years. AA by titration. Pincemail, 2012		May-Nov harvest: Mean: 75.2 Range: 33.7-115.5 Significant effect of year (graphical data)	
2 strawberry cultivars stored at 3°C for 1-20 days in either air or 20% CO ₂ . Total vitamin C, AA, and DHAA by enzyme assay. Shin, 2008	At harvest: <u>AA</u> Northeaster: 32.3 Earliglow: 44.9 <u>DHAA</u> Northeaster: 0.5 Earliglow: 0 <u>Total vitamin C</u> Northeaster: 32.8 Earliglow: 44.9	Not determined	Day 20, Northeaster: <u>AA</u> Air: 44.2 (+27%) CO ₂ : 28.6 (-11%) <u>DHAA</u> Air: 0 CO ₂ : 1.7 (+250%) <u>Total vitamin C</u> Air: 42.0* CO ₂ : 30.3 (-8%) Day 20, Earliglow: <u>AA</u> Air: 52.4 (+17%) CO ₂ : 24.2 (-46%) <u>DHAA</u> Air: 3.9 CO ₂ : 13.9 <u>Total vitamin C</u> Air: 56.3 (+25%) CO ₂ : 38.1 (-15%) *Total vitamin C value as reported in paper is lower than AA value

Published data on raspberry vitamin C content reported a range from 7-41 mg/100 g between cultivars: the values in nutrient data tables fall within this range (Tosun et al. 2009; Pirogovskaia et al. 2012). AA content was also influenced by growing site and was significantly different between seasons, with levels varying up to 1.9-fold between years (Pirogovskaia et al. 2012). A study of blackberry cultivars reported a range in Total vitamin C from 8-12 mg/100g; these values are ~3-fold lower than values reported in the nutrient data tables (Thomas et al. 2005).

A study on nutrient stability in different berry fruits over 8 days at temperatures between 0-30°C showed vitamin C levels were relatively stable in strawberries and highbush blueberries (Kalt et al. 1999). In contrast, vitamin C levels decreased by 22% and 46% in raspberries at 20° and 30°C respectively. There was also a significant, albeit small, decline in vitamin C levels with storage at higher temperatures in lowbush blueberries. In other studies of raspberries, vitamin C and anthocyanin content was stable over 3-4 days storage, and also with freezing (Mullen et al. 2002; Krüger et al. 2011). In contrast, a study of raspberries stored for 9 days in either controlled atmosphere or high CO_2 at 1°C reported total vitamin C declined by 90% (Agar et al. 1997; Mullen et al. 2002). In strawberries, there was a significant effect of atmosphere on Total vitamin C levels during storage; levels increased 28-29% in air, but decreased by 8-13% in 20% CO_2 over 20 days (Shin et al. 2008). Similarly, total vitamin C levels were stable in strawberries stored in controlled atmosphere or high CO_2 at 1°C for 20 days, but the proportion of DHAA increased from ~10% to ~50-75% in strawberries stored in 20% CO_2 (Agar et al. 1997). In the same study, further storage in controlled atmosphere and removal of berries to ambient conditions to mimic shelf-life resulted in higher levels of DHAA, and also loss of total vitamin C (approximately -30% from day 0). In blackberries, total vitamin C levels were stable over 9 days storage, but there was an increase in DHAA levels (Agar et al. 1997).

In summary, vitamin C levels vary up 8-fold between berry cultivars, and are also affected by growing season and location. Vitamin C levels are relatively stable in berries during short-term storage, but the proportion of DHAA rose during storage. Prolonged storage was associated with losses of total vitamin C. Large losses of vitamin C occur in frozen berries, with even greater losses in canned berries.

1.4. Citrus fruit

Citrus fruit are a major dietary contributor to vitamin C in all age and gender groups in Australia and New Zealand, with the exception of 17-18 year old Australian females. Citrus fruit provide 5-17% of vitamin C intake. Citrus are not a major source of dietary carotene, thiamin, riboflavin, niacin, folate or vitamins E and B6 in Australia and New Zealand.

Vitamin A and C contents of different citrus fruits, as reported in nutrient composition tables for Australia, New Zealand and the USA, are summarised in Table 1.4.1. These data indicate a large range of carotene and vitamin C content between citrus fruit types, and between cultivars of different citrus fruits. However, vitamin C levels are consistently high across all citrus types.

Table 1.4.1 β -carotene (µg/100 g) and C (mg/100 g) levels in citrus fruits from nutrient reference tables

Fruit	β-carotene		Vitamin C		
	NUTTAB ^a	NZ	NUTTABa	NZ	USDA ^a
Grapefruit	11	0	40	40	31-79
Lemon	10	7	48	52	53
Lime	30	NA	47	na	29

Fruit	β-carotene		Vitamin C		
	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA ^a
Mandarin	46-290	67	28-58	42	27
Orange	56-140	85	44-58	36	45-59

^aWhere values are provided for different varieties a range is given. na, data not available

As summarised in table 1.4.2, data on vitamin C levels in citrus fruits from published scientific literature are generally consistent with the values reported in the nutrient reference tables (Ladaniya et al. 2003; Dhuique-Mayer et al. 2005; Erkan et al. 2005; González-Molina et al. 2008; Milella et al. 2011; Bermejo and Cano 2012). There is a strong effect of cultivar (genotype) on vitamin C levels, with a 1.4-fold range in oranges and 2.1- to 4.6- fold differences within mandarin and clementine varieties (Dhuique-Mayer et al. 2005; Milella et al. 2011; Bermejo and Cano 2012). A levels decreased by 22-31% over 3-6 months storage, but as DHAA levels were not reported in these studies it is unclear if these losses are representative of changes in total vitamin C (Ladaniya et al. 2003; Erkan et al. 2005).

The comparison of carotene levels between published data and nutrient reference tables is complicated by the varied units in which carotenes are reported (for example as β -carotene, total carotenoids or retinol equivalents). However, similar levels of carotene were observed in the juice of 8 orange cultivars (13-38 µg RE/100 mL), but higher levels were observed for mandarins (96-115 µg RE/100 mL) in comparison to nutrient reference tables (Dhuique-Mayer et al. 2005). Similar variations in carotenoids content for oranges and mandarins were reported by another two studies (see Table 1.4.2; (Fanciullino et al. 2008; Dhuique-Mayer et al. 2009)).

Table 1.4.2 Natural variation and effects of season and storage on carotene (μ g/100 g, or as indicated) and vitamin C (mg/100 g) levels in citrus fruits.

Study	Variety	Season / Growing conditions	Storage
8 orange cultivars, 1 mandarin and 1 clementine . Carotenoids and total vitamin C by HPLC. Dhuique-Mayer, 2005	Total vitamin C Orange: Mean: 55.3 Range: 46.2-62.7 Mandarin: 41.3 Clementine: 53.1 <u>Vitamin A</u> (μg RE/100 mL) Orange: Mean: 24.3 Range: 13.2-38.1 Mandarin: 115.4 Clementine: 96.0	Not determined	Not determined
3 orange cultivars, 2 mandarin and 1 clementine. Carotenoids measured in 2-5 growing locations, and oranges assessed in 3 consecutive years. Carotenoids by HPLC. Dhuique-Mayer, 2009	<u>β-carotene</u> mg/100 mL Orange: Mean: 3.7 Range: 0.8-6.9 Mandarin Mean: 11.6 Range: 4.0-19.8	β-carotene Mean (range) over 3 seasons: Valenica: 4.6 (3.5-5.5) Sanguinelli: 4.3 (3.8- 5.4) Pera: 5.0 (3.6-6.9) Growing location (no.): Valenica (5): 2.0 (0.8- 4.8) Sanguinelli (2): 1.0-3.7 Pera (2): 2.6-6.8 Mandarin (2): 4.0-19.8 Hansen mandarin (3): 11.4 (7.0-19.7) Clementine (2): 1.7-6.8	Not determined
6 mandarin, 3 hybrid, 3 orange, 2 grapefruit, 2 pummelo, 2 lime, 1 citron and 1 lemon cultivars on different rootstocks, harvested up to 11 times between September and March. Total vitamin C by HPLC *Subset of data for single time point assessed Bermejo, 2012	Total vitamin C* mean (range if>2 cultivars) Mandarin: 40.2 (25.9-54.8) Hybrid: 31.0 (16.9- 55.9) Orange: 56.9 (53.1- 60.2) Grapefruit: 48.0 Pummelo: 53.1 Lime: 29.6 Citron: 33.4 Lemon: 58.9	Effect of Rootstock: 9 cultivars studied. Significant effect at all 5 harvest dates for lemon and citron, and 1-2 harvest dates for 5 citrus See text for more details.	Not determined
4 orange cultivars. Total carotenoids by	<u>Total carotenoids</u> (mg/100 mL)	Not determined	Not determined

Study	Variety	Season / Growing conditions	Storage
HPLC Fanciullino, 2008	Mean: 2.7 Range: 0.3-4.7		
2 Fino lemon clones (49-5, 95) harvested at 3 sampling times over 3 consecutive years. AA and DHAA by HPLC Gonzalez-Molina, 2008	<u>Total vitamin C</u> Range: Clone 49-5: 21.6- 40.1 Clone 95: 21.9-35.1	<u>Total vitamin C</u> Clone 49-5 / 95 Year: 2004: 39.5 / 30.6 2005: 30.9 / 30.1 2006: 24.2 / 24.0 Harvest time: Early: 34.9 / 29.9 Mid:26.3 / 25.3 Late: 29.0 / 27.7	Not determined
13 clementine cultivar and 2 hybrids. Vitamin C (not specified) by HPLC Milella, 2011	<u>Vitamin C</u> Mean: 57.4 Range: 20.6-95.5	Not determined	Not determined
Valencia oranges , stored up to 6 months following no treatment, curing at 48-53°C, or hot-water dipping. AA by titration. Erkan, 2005	<u>AA</u> At harvest: 60.3	Not determined	<u>AA</u> 6 months: Control: 44.3 (-27%) Curing: 44.4-46.9 (-22% to -26%) Hot water: 43.2-46.7 (-22% to -27%)
Lime, mandarin and orange stored for 75 (mandarin) to 90 (lime and orange) days at 6- 8°C. AA by titration Ladaniya, 2003	<u>AA</u> At harvest: Lime: 31.8 Mandarin: 24.2 Orange: 40.4	Not determined	<u>AA</u> After 75-90d storage: Lime: 32.2 Mand.: 22.1 (-9%) Orange: 27.9 (-31%)

Effects of season and harvest time on vitamin C and carotene levels have also been assessed in citrus fruits. In two clones of Fino lemons, total vitamin C ranged from 24-40 and 24-31 mg/100 g over three harvest seasons, despite similar climatic conditions (González-Molina et al. 2008). In the same study, total vitamin C levels also fluctuated with harvest time, with lowest levels in mid-season harvest fruit. Similar observations were made for β -carotene levels in orange cultivars harvested in three consecutive years, with 1.4- to 1.9- fold differences between levels within the same cultivar (Dhuique-Mayer et al. 2009). The effect of growing location was also assessed in this study. β -carotene levels varied up to 6-fold between fruit of the same cultivar grown in different locations in the same year.

In a study of 9 citrus cultivars there was a variable effect of rootstock on total vitamin C levels. In the citron and lemon cultivars studied, total vitamin C content varied 12-33% and 9-21%, respectively, between fruit from the same cultivar grown on two different rootstocks and

harvested at 5 intervals. In other citrus fruit, rootstock had less of an effect on vitamin C levels, with either no difference, or differences at only 1 or 2 of the time-points assessed (Bermejo and Cano 2012).

In summary, these data demonstrate that there is a high level of variation in both carotene and vitamin C content in citrus fruits, with the greatest variation coming from cultivar type. Growing season, location and harvest time also influence nutrient composition of citrus fruits. Post-harvest treatments and storage were also associated with vitamin C losses, although the susceptibility to these changes varied with fruit type.

1.5. Tropical fruit

Tropical fruits do not contribute more that 5% of dietary carotene intake in Australia and New Zealand. In contrast, 5-6% of dietary vitamin C intake in females over 50 and Australian males over 70 is derived from tropical fruits. Tropical fruits contribute 5-19% of vitamin B6 levels in the majority of population groups, except 14-18 year old Australians, 9-13 year old male Australians and female 14 year old New Zealanders. The major fruit contributing to this intake of vitamin B6 is bananas. Tropical fruits do not contribute to >5% dietary intake of thiamin, riboflavin, niacin, folate or vitamin E.

Fruit	β-carotene		Vitamin C		
	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA ^a
Avocado	20-29	50	6-13	7	9-17
Banana	23-35	75	4-19	8	9
Custard apple	0	n.a.	43	n.a.	19
Guava	380	n.a.	243	n.a.	228
Litchi	0	n.a.	49	n.a.	72
Mango	1433	1200	26	30	36
Pawpaw (papaya)	240	n.a.	60	n.a.	61
Pineapple	10	60	17	25	17-56
Pineapple (canned)	15-17 ^b	15-22 ^b	8-12 ^b	10-14 ^b	7-10 ^c
Rambutan	0	n.a.	70	n.a.	n.a.

Table 1.5.1 β -carotene (μ g/100 g) and vitamin C (mg/100 g) levels in tropical fruits from nutrient reference tables

^aWhere values are provided for different varieties a range is given. ^bFruit canned in syrup or juice, drained,

^cFruit canned in syrup or juice, solids and liquids

Nutrient composition data for tropical fruits are presented in Table 1.5.1. Avocados are lipidrich, and show a high level of variability in both carotene and vitamin C between cultivars. In Hass avocados, β -carotene levels varied from 10-100 µg/100 g in fruit depending on growing location and harvest time (Lu et al. 2009).

Bananas also exhibit variation in vitamin content; one report found total provitamin A carotenoids varied 20% within individual fruits, and further variation of \pm 7% to \pm 43% occurred within the hand of bananas from different varieties. Total provitamin A carotenoid content ranged from 3-76 nmol/g dry weight (i.e. 161-4080 µg/100 g) between six banana and plantain varieties (Davey et al. 2007; Lu et al. 2009). In another study of two banana cultivars, β-carotene content ranged from 43-131 µg/100 g, and vitamin C from 3-18 mg/100 g (Wall 2006a). In Southeast Asia there are a number of banana cultivars with orange to red coloured flesh, with β-carotene levels of up to 1370 µg/100 g in these banana cultivars (Englberger et al. 2003).

A study of 5 mango varieties reported a range of mean β -carotene levels from 500-2600 μ g/100 g between varieties, with intra-variety variations of 1.4 to 7.0-fold depending on location and harvest time (Manthey and Perkins-Veazie 2009). Vitamin C levels ranged from 12-125 mg/100g between varieties, and the intra-variety variation ranged from 1.1 to 2.6-fold. In a study on the effects of fruit handling on β -carotene and vitamin C levels in mango and papaya, the effect of fruit-to-fruit variation was greater than that of handling, particularly for vitamin C (standard deviation was >40% of mean) (Oliveira et al. 2010). In green mangoes, vitamin C levels decreased 50% and 58% over 15 days in whole and fresh-cut fruit, respectively (Robles-Sánchez et al. 2009). Losses of β -carotene were similar in fresh-cut fruit (-40%), but levels were stable in whole-fruit over 15 days.

Nutrient composition varied between two pineapple varieties; β -carotene, total carotenoids and total vitamin C content were 2.4-, 3.0- and 1.9-fold higher, respectively, in Del Monte Hawaii Gold compared to Smooth Cayenne pineapples (Ramsaroop and Saulo 2007). Vitamin C and total phenol content also varied within pineapple, with highest levels in the middle third of fruits, and levels 8-13% lower in the top third and 10-21% lower in the bottom third of the fruit (Montero-Calderón et al. 2010). Pineapples are commonly canned, and this process can decrease vitamin C content by >30% (see Table 1.5.1). Table 1.5.2 Natural variation and effects of season and storage on carotene (μ g/100 g, or as indicated) and vitamin C (mg/100 g) levels in tropical fruits.

Study	Variety	Season / Growing conditions	Storage
Hass avocado grown in 4 locations and harvested at 4 times. Carotenoids by HPLC. Lu, 2009	Not determined	β-carotene Effect of location: Mean (range) January: 26 (10-41) April: 65 (56-78) July: 79 (58-88) September: 69 (52-101) <u>Total carotenoids</u> Range: 590-4220	Not determined
2 banana and 5 papaya cultivars grown in 2-7 locations. AA and carotene (μg RE/100 g) by HPLC Wall, 2006a	<u>AA</u> Mean (range): Banana: 9.7 (4.5-12.7) Papaya: 51.2 (45.3- 55.6) <u>RE</u> Banana: 10.9 (8.2- 12.4) Papaya: 44.1 (20.4- 50.3)	<u>AA</u> Banana: Dwarf: 6.3-17.5 Williams: 2.5-6.3 Papaya: Rainbow: 46.6-60.4 Sunrise: 46.8-64.5 <u>RE</u> Banana: Dwarf: 7.7-17.1 Williams: 6.1-9.3 Papaya: Rainbow: 32.0-74.0 Sunrise: 18.7-72.5	Not determined
6 banana/plantain cultivars assessed in fruit from 1-3 plants. Pro-vitamin A carotenoids (pVAC) by HPLC Davey, 2007	<u>pVAC</u> (nmol/g dry weight) Mean: 36.7 Range: 2.7-76.3	Not determined	Not determined
Guava grown in 3 locations. AA by HPLC. Gull, 2012	Not determined	<u>AA</u> Mean: 175.7 Range: 129.5-247.9	Not determined
2 longan , 3 litchi and 6 rambutan cultivars harvested from 3-5 locations. AA by HPLC. Wall, 2006b	<u>AA</u> Mean (range): Longan: 60.1 (44.7- 79.2) Litchi: 27.6 (21.0-36.0) Rambutan: 36.4 (22.0- 47.8)	AA Range for cultivars grown in ≥1 location Longan: Biew Kiew: 44.7-79.2 Sri Chompo: 51.2-59.0 Litchi: Bosworth: 21.0-24.0 Kaimana: 30.7-36.0 Rambutan: Bongrien: 37.6-39.3	Not determined

Study	Variety	Season / Growing conditions	Storage
5 mango cultivars, 1-4 growing locations and 1- 4 harvests within a season for each location. AA measured spectrophotometrically, and β -carotene by HPLC. Manthey, 2009	<u>AA</u> Mean: 37.8 Range: 11.5-134.5 <u>β-carotene</u> Mean: 1160 Range: 310-3900	Growing location by cultivar <u>AA</u> Tommy Atkins: 17.0-20.3 Haden: 27.5-31.7 Kent: 22.6-27.4 β -carotene Tommy Atkins: 450-580 Haden: 490-810 Kent: 840-2180	Not determined
9 cultivars of Thai mango , 4-7 days post- harvest ripening, 2 consecutive years. Carotene (μg RE/100g dry weight) by HPLC. Vasquez-Caicedo, 2005	<u>RE</u> Mean: 1037 Range: 281-2049	<u>RE</u> Season: Mean (range) 2001: 1061 (281-1573) 2002: 1013 (397-2049) Difference by cultivar: 0.5 to 1.6-fold	Carotene increase up to 8.8-fold with ripening
2 pineapple cultivars Total vitamin C and carotene by HPLC Ramsaroop, 2007	<u>Total vitamin C</u> Range: 35-68 <u>β-carotene</u> Range: 17.2-41.6	Not determined	Not determined
Within-fruit variation in vitamin C of pineapple . Total vitamin C by HPLC Montero-Calderon, 2010	<u>Total vitamin C</u> Upper third: 30.5 Middle third: 35.1 Bottom third: 33.3	Not determined	Not determined

A study of papaya cultivars in Hawaii found β -carotene ranged from 81-410 µg/100 g, and vitamin C ranged from 45-65 mg/100 g (Wall 2006a). In litchi, vitamin C content varied from 21-36 mg/100g, depending on cultivar and location (Wall 2006b). Storage of litchi was associated with rapid decline in AA content, with ~40% decrease after 8 days storage at ambient temperature, and losses of approximately 35% during 8 weeks cold storage (Mahajan and Goswami 2004). Similar losses were observed in two other litchi cultivars, with 40-45% decrease in AA during 28 days cold storage (Khan et al. 2012). Vitamin C was also variable in rambutans, with levels ranging from 22-48 mg/100 g (Wall 2006b). In guava, vitamin C content in unripe fruit ranged from 73-136 mg/100 g, and in ripe fruit from 129-248 mg/100 g (Gull et al. 2012).

In summary, the tropical fruit category encompasses a wide variety of fruits, with some rich in either vitamin C, carotene or both. Across all fruit types, there is a large variation in nutrient composition with cultivar, and for the fruits where data were available it was evident that harvest time and location also effect vitamin C and carotene content. Vitamin C levels

decline rapidly with storage in mango and litchi, but carotene levels increased with ripening in stored mangos.

1.6. Other fruit

Grapes, rockmelon (cantaloupe), honeydew melon, watermelon, kiwifruit and persimmon are included in "other fruit" in the Australian and New Zealand nutrition surveys. The other fruit category contributed to 7% and 5% of dietary carotene intake in Australian male children aged 2-3 and 4-8 years old, respectively. For vitamin C, other fruit contributed 5-6% of dietary intake in Australian 2-3 year olds and female 4-8 year olds. In New Zealand, other fruit made a major contribution to vitamin C intake in females aged 14 years (7%), 50-69 years (6%) and \geq 70 years (9%).

As summarised in Table 1.6.1, yellow-fleshed kiwifruit tend to have higher vitamin C content in comparison to green-fleshed species. A study of kiwifruit species and cultivars found total vitamin C content ranged from 26-185 mg/100 g in green-fleshed fruit. The most commonly consumed kiwifruit cultivar is Hayward, and the inter-fruit variation in vitamin C content in this cultivar was 26%, with a mean concentration of 55 mg/100 g (Nishiyama et al. 2004). Vitamin C content is still dependent on cultivar in yellow-fleshed kiwifruit, with concentrations ranging from 64-206 mg/100 g (Table 1.6.2, (Nishiyama et al. 2004)). During storage, AA levels decreased with time, with 32% reduction between 1 and 5 months (Aghdam et al. 2011). Treatment with methyl salicylate decreased the storage-associated diminution of AA. However, without DHAA or total vitamin C data it is unclear whether these changes represent destruction or conversion of AA.

As shown in Table 1.6.1, there is a large range in carotene and vitamin C content in grapes. The range of β -carotene levels in black grapes was 40-91 µg/100 g, with +9 to -38% variation in β -carotene levels observed between two consecutive seasons (Oliveira et al. 2004). The same study also showed that β -carotene levels were higher in shaded fruit, in fruit grown at a greater plant height and that levels decreased with ripening.

Ennit	β-carotene		Vitamin C		
Ffull	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA
Grape	0-50	54-91	0-7	4	3
Honeydew melon	30-50	30	12-20	50	18
Kiwifruit (gold)	45	43	110	109	105
Kiwifruit (green)	50	54	71	85	93
Passionfruit	360	10	18	20	30
Persimmon	200	825	14	10	8
Rockmelon	836	205	41	27	37
Watermelon	427	20	8	8	8

Table 1.6.1 β -carotene (μ g/100 g) and C (mg/100 g) levels in grapes, kiwifruit, persimmon and watermelon.

^aWhere values are provided for different varieties a range is given.

Published data for carotene in Chinese-grown persimmons is lower than that in nutrient data tables, with levels ranging 12-91 μ g RE/100 g in astringent cultivars, and 9-35 μ g RE/100 g in non-astringent cultivars (Zhou et al. 2011). Published values for vitamin C content of persimmon (8-14 mg/100 g) were similar to the values in the nutrient data tables (12 mg/100g) (Celik and Ercisli 2008).

 β -carotene levels vary 2-10-fold between watermelon cultivars (Perkins-Veazie et al. 2006; Tlili et al. 2011a). Vitamin C levels also varied between watermelon cultivars, with levels varying from 11-34 mg/100 g in ripe fruit (Tlili et al. 2011a; Tlili et al. 2011b). The vitamin C content also varies within watermelon, with the distribution of AA and DHAA within fruit varying with cultivar (Tlili et al. 2011b).

Honeydew melon and rockmelon are cultivars of muskmelon. As detailed in Table 1.6.1 there is a wide range of carotene and vitamin C content as reported in nutrient composition tables. In a study of recombinant inbred lines of melon, β -carotene levels varied between lines and were also affected by growing location and season (Cuevas et al. 2008). Overall, β -carotene levels ranged from 330-2440 μ g/100 g. Another study compared standard, hybrid and grafted melons and found AA levels ranged from 5-22 mg/100 g (Kolayli et al. 2010). In a study of four honeydew melon cultivars, total vitamin C levels ranged from ~13-26 mg/100 g, with up to 3-fold variation in vitamin C levels between fruit harvested in 2 consecutive years (Lester and Crosby 2002).

Table 1.6.2 Natural variation and effects of season and storage on carotene (μ g/100 g) and vitamin C (mg/100 g) levels in grape, melon, kiwifruit and persimmon.

Study	Variety	Season / Growing conditions	Storage
8 grape cultivars harvested in 2 consecutive seasons. β-carotene by HPLC. Oliveira, 2004	<u>β-carotene</u> Mean: 59.8 Range: 40.2-91.0	<u>β-carotene</u> Mean (range) 2001: 66.2 (45.6- 91.0) 2002: 53.3 (40.2- 62.1)	Not determined
21 kiwifruit cultivars; 14 green-fleshed and 7 yellow-fleshed. Total vitamin C by HPLC. Nishiyama, 2004	<u>Total vitamin C</u> Green-fleshed: Mean: 76.0 Range: 25.5-184.6 Yellow-fleshed: Mean: 125.4 Range: 64.4-205.8	Not determined	Not determined
Kiwifruit stored for 1-5 months at 0.5°C ± pre- treatment with methyl salicylate (MeSA) vapour. AA by titration. Aghdam, 2011	Not determined	Not determined	<u>AA</u> (% of 1 m control) Control: 1 m: 60 5 m: 41 (-32%) 8-32μL/L MeSA: 1m: 63-75 (+5 to +25%) 5m: 46-58 (-3 to - 23%)
3 commercial melon cultivars (and other inbred lines), 2 growing locations and 2 consecutive years. β-carotene by HPLC. Cuevas, 2008	<u>β-carotene</u> Mean: 1310 Range: 880-1960	<u>β-carotene</u> Mean (range) of 2 years and 2 locations for each cultivar: Sol Dorado: 1520 (1070-1960) Esteem: 1080 (880- 1240) Top-Mark: 1330 (1050-1790)	Not determined
3 melon types. AA measured spectrophotometrically Kolayli, 2010	<u>AA</u> Mean: 15.4 Range: 5.4-22.5	Not determined	Not determined
46 persimmon cultivars; 42 astringent and 14 non- astringent. Carotenoids by HPLC Zhou, 2011	Retinol equivalents Astringent: Mean: 39.9 Range: 11.8-90.6 Non-astringent: Mean: 19.6 Range: 8.6-35.4	Not determined	Not determined
5 watermelon cultivars. Total vitamin C measured	<u>Total vitamin C</u> Mean: 14.9	Not determined	Not determined

Study	Variety	Season / Growing conditions	Storage
spectrophotometrically,	Range: 12.0-20.4		
carotenoids by HPLC	<u>β-carotene</u>		
Tlili, 2011a	Mean: 150		
	Range: 100-210		
	<u>Lycopene</u>		
	Mean: 5270		
	Range: 4450-6450		
6 watermelon cultivars.			
Total vitamin C measured	<u>Total vitamin C</u>		
spectrophotometrically	Mean: 17.7	Not determined	Not determined
	Range: 10.5-24.0		
Tlili, 2011b			
Total carotenoids			
measured in 26	<u>Total carotenoids</u>		
watermelon cultivars by	Mean: 7780	Not determined	Not determined
HPLC.	Range: 3710-12190		
Perkins-Veazie, 2006			

In summary, as with other fruit classes, vitamin C and carotene contents varied greatly between cultivars of the same fruit, with up to 8 to 10-fold variations in AA content of kiwifruit and carotene content of persimmon cultivars, respectively. AA content also decreased by up to 32% with storage of kiwifruit.

1.7. Cucurbit vegetables

In the national nutrition surveys, cucurbit vegetables were grouped under the "other fruiting vegetables" category in Australia, and as "other vegetables" and "orange vegetables" in New Zealand. In Australian children aged 2-16 years, "other fruiting vegetables" were not a major contributor to carotene or vitamin C intake. In Australians aged 17 years or over, 9-18% of dietary carotene was derived from other fruiting vegetables. In Australian females aged 19-29 years, and both male and female Australians aged 30 years or over, 5-6% of dietary vitamin C intake was derived from "other fruiting vegetables", with vitamin C from capsicum likely being a major contributor to this intake. "Other vegetables" did not make a major contribution to carotene or vitamin C intakes in any of the New Zealand population groups studied. However, "orange vegetables" contributed to 35-61% of dietary carotene intakes in all New Zealand populations. These vegetable categories were not major contributors to vitamin E, B6, thiamin, riboflavin, niacin or folate intakes.

The cucurbits include various types of pumpkin, also known as winter squash, as well as zucchini and cucumber. As shown in Table 1.7.1, the carotene levels vary >100-fold between different cucurbits. Vitamin C levels also range up to 10-fold, with similar values reported in

published literature (Mawamba et al. 2009). The effects of cooking are more varied, with good preservation of carotene in boiled and baked pumpkin (see Table 1.7.1). In contrast, boiling is associated with 13-27% loss of vitamin C, and steaming led to 44-66% vitamin C losses, depending on the type of pumpkin or squash (Table 1.7.1 (Mawamba et al. 2009)). In this study, steaming also led to 74-91% loss of β -carotene, which is in contrast to the effects of boiling or baking as detailed in Table 1.7.1. β -carotene levels in different cucurbits varied from 5-67 µg/g, with lower levels in zucchini, and higher levels in pumpkins (Azevedo-Meleiro and Rodriguez-Amaya 2007). Intra-variety differences in this study ranged from 13-29%.

Emit	β-carotene		Vitamin C		
rfult	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA ^a
Cucumber	78-250	59-83	7-13	1-13	3
Pumpkin (winter squash)	433-2710	n.a.	8-24	n.a.	2-21
Pumpkin (baked)	484-3029	3170	8-24	10	10-15
Pumpkin (boiled)	406-1575	3530	7-19	19	4-7
Zucchini	80-243	610	22-30	0	18
Zucchini (boiled)	86-275	n.a.	22-29	n.a.	13

Table 1.7.1 β -carotene (μ g/100 g) and C (mg/100g) content of cucurbit vegetables.

^aWhere values are provided for different varieties a range is given.

In summary, little published data were available on the effects of cultivar, growing condition and storage on nutrient composition of cucurbit vegetables. From nutrient composition tables, the vitamin C and carotene content varied between cultivars of cucumber, pumpkin and zucchini. In contrast to fruits, these nutrients were relatively stable during cooking.

1.8. Fruiting vegetables

In the nutrition surveys, fruiting vegetables are included in the minor food groups "tomato and tomato products", "other fruiting vegetables" and "other vegetables", with sweet corn in the "beans/peas/corn" group for the New Zealand surveys.

Tomato and tomato products contributed to 5% of carotene intake in Australian boys aged 14-16 years, but were not major contributors to carotene intake in other population groups. Tomato and tomato products contributed to 5-8% of vitamin C intake in Australian and New Zealand adults aged 30 years and above, but not in younger age groups. As indicated in the previous section, "other fruiting vegetables" contributed 9-18% of carotene intakes in

Australian adults, but this was due to the inclusion of pumpkins in this food group. "Other fruiting vegetables" contributed to 5-6% of dietary vitamin C intake in Australian adults aged over 30, and Australian females aged 19-30 years. None of the minor food groups "tomato and tomato products", "other fruiting vegetables", or "other vegetables" made a major contribution to vitamin E, B6, thiamin, riboflavin, niacin or folate intakes. In New Zealand, beans/peas/corn were not major contributors to vitamin A, C, E, B6, thiamin, riboflavin, niacin or folate intakes.

Emit	β-car	otene	Vitamin C		
Fruit	NUTTAB ^a	NZ	NUTTAB ^a	NZ	USDA ^a
Capsicum (green)	161	117	98	24	80
Capsicum (red/yellow)	282	930	152	144	184 (yellow)
Chilli	140-1370	n.a.	128-201	n.a.	45-243
Eggplant	39	n.a.	3	n.a.	2
Eggplant (cooked)	38-62	n.a.	2-4	n.a.	2
Sweet corn	60	n.a.	5	n.a.	7
Sweet corn (boiled)	6	120	4	3	6
Sweet corn (canned)	23	158	3	5	2
Sweet corn (frozen)	6	n.a.	4	n.a.	6
Tomato	60-460	549	16-28	24	9-16
Tomato (canned)	393-420	209	10	8	8-9

Table 1.8.1 β-carotene (μg/100 g) and vitamin C (mg/100 g) content of fruiting vegetables

Large variations in AA were observed in a study of fourteen tomato genotypes, with levels ranging from 1-35 mg/100 g (Roselló et al. 2011). In this study, tomatoes were grown in Spain in either a glasshouse during spring/summer and autumn/winter, or in an open-field during spring/summer. Genotype was the main source of variation, but environment also affected AA levels, with lowest levels in tomatoes grown during autumn/winter. β -carotene content was less dependent on environment, but showed similar variation between genotype, with levels ranging from 400-3500 µg/100 g (Roselló et al. 2011). In twelve salad tomato varieties, AA ranged from 15-21 mg/100 g and total carotenoids ranged from 6.3-9.9 mg/100 g (Abushita et al. 2000).

In a study of three tomato cultivars, AA levels increased 1.3- to 2-fold with ripening, and Total vitamin C content ranged from 8-15 mg/100 g between ripe fruit (Periago et al. 2009). A

study of cherry tomatoes found no significant change in AA content with ripening, but total carotenoid levels increased >10-fold (Raffo et al. 2002). However, in cherry tomatoes harvest time had a significant effect on AA, total vitamin C and carotenoid levels (Raffo et al. 2012). In this study total vitamin C levels ranged 2.3-fold and AA levels 2.8-fold, with AA representing 38-61% of total vitamin C in tomatoes harvested at 6 times within a 12 month period (see Table 1.8.2 for details). Carotenoid levels also varied by 1.8-fold, but neither vitamin C nor carotenoid levels showed a clear correlation with harvest time, solar radiation or temperature. Year-to-year variation is also evident in tomatoes, with mean AA levels varying 1.9-fold between consecutive years in a study of 16 cultivars (Erge and Karadeniz 2011). Total carotenoids were less effected by year, but varied by up to 3.9-fold between cultivars.

The effect of storage in tomatoes is dependent on cultivar, time and temperature. In a study of five cultivars stored for 5 days at 15°C, AA levels decreased 12-34% in four strains, but increased 16% in another cultivar (Molyneux et al. 2004). In another study of 4 tomato cultivars, AA levels increased in tomatoes stored for 15 days and 6°C and 12°C, but decreased by 15% in tomatoes stored at 25°C (Vinha et al. 2013). In industrial tomatoes, AA levels were similar between cultivars, but decreased 55% with processing to tomato paste, while total carotenoids ranged from 6.8-13.2 mg/100 g, and were increased in tomatoes to sauce or soup did not significantly change AA levels, whereas baking (at 180-220°C for 45 minutes) and juicing with sterilization decreased AA content by 42-66% (Gahler et al. 2003). Similarly, thermal processing of tomatoes at 88°C for 2-30 minutes decreased vitamin C content by 10-29% (Dewanto et al. 2002). The nutrient compositions of canned tomatoes also demonstrate large losses of carotene and vitamin C (Table 1.8.1).

Table 1.8.2 Natural variation and effects of season, storage and processing on carotene (μ g/100 g) and vitamin C (mg/100 g) levels in tomato

Study	Variety	Season / Growing conditions	Storage or processing
3 tomato cultivars. AA and lycopene by HPLC. Periago, 2009	<u>AA</u> Mean: 10.4 Range: 7.9-15.4 <u>Lycopene¹</u> Mean: 5.0 Range: 3.0-6.8	Not determined	Not determined
5 tomato cultivars, stored for 2 or 5 days at 15°C in the dark. AA by titration and lycopene by spectrophotometry. <i>NOTE: data in mg/100</i> <i>g dry weight</i> Molyneux, 2004	<u>AA</u> Mean: 212 Range: 192-237 <u>Lycopene¹</u> Mean: 35.0 Range: 27.5-46.1	Not determined	<u>AA</u> Mean (range) 2d: 205 (173-247) -3% 5d: 185 (133-224) -12% <u>Lycopene¹</u> 2d: 38.9 (28.5-55.1) +11% 5d: 47.1 (32.2-62.4) +35%
2 cherry tomato cultivars (pooled for analysis), harvested at ripe stage in April, June, July, December, January and March. AA, total vitamin C, and carotenoids by HPLC. Raffo, 2012	Not determined	<u>AA</u> Mean: 28 Range: 16-44 <u>Total vitamin C</u> Mean: 56 Range: 31-71 <u>Total carotenoids</u> Mean: 11779 Range: 8353-15119	Not determined
3 tomato cultivars and 11 experimental genotypes grown in 2 locations and 2 seasons as indicated. AA by capillary zone electrophoresis and carotenoids by spectrophotometry. Rosello, 2011	Overall mean and range (all seasons and locations) <u>AA</u> Mean: 14.5 Range: 0.6-34.6 β -carotene Mean: 1560 Range: 400-3500	<u>AA</u> Turis Spring/Summer: 18.5 (11.3-34.6) Valencia Spring/Summer: 15.2 (10.9-25.0) Valencia Autumn/Winter: 9.9 (0.6-33.1)	Not determined
27 tomato cultivars; 12 for fresh-eating, 15 for processing. Processing of one cultivar to tomato paste. AA and carotenoids by HPLC Abushita, 2000	AA Fresh-eating: Mean: 17 Range: 15-21 Processing: Mean: 19 Range: 17-21 <u>β-carotene</u> Fresh-eating: Mean: 424 Range: 285-617 Processing:	Not determined	<u>AA</u> mg/g dry matter Raw: 3.2 Hot-break extract: 2.0 (-38%) Paste: 1.5 (-53%)

Study	Variety	Season / Growing conditions	Storage or processing
	Mean: 310 Range: 210-447		
16 tomato cultivars harvested in 2 consecutive years. AA and carotenoids by HPLC. Erge, 2011	Not determined	<u>AA</u> Mean (range) 2003: 4.0 (2.2-7.4) 2004: 7.5 (2.7-13.8) <u>Total carotenoids</u> 2003: 19.4 (8.1-31.6) 2004: 23.2 (13.1-34.1)	Not determined
4 tomato cultivars stored at 6°C, 12°C and 25°C for 15 days. AA by titration and lycopene by spectrophotometry. Vinha, 2013	Day 1: <u>AA</u> Mean: 50.8 Range: 39.8-72.1 <u>Lycopene</u> Mean: 50.4 Range: 40.5-60.1	Not determined	Day 15: <u>AA</u> 6°C: 60.2 (+18%) 12°C: 56.6 (+11%) 25°C: 43.4 (-15%) <u>Lycopene</u> 6°C: 44.6 (-12%) 12°C: 41.5 (-18%) 25°C: 39.8 (-21%)
Cooking of tomatoes by baking for 15-45 min at 180-220°C, or boiling peeled tomatoes with cream to process to soup. AA by HPLC Gahler, 2003	Not determined	Not determined	AA Baking: 0 min: 12.8 15 min: 12.9 30 min: 10.1 (-21%) 45 min: 6.4 (-50%) Soup: 0 min: 12.4 50 min: 11.5

¹Lycopene data presented for tomatoes when total carotenoid data not available

Carotenoid content in capsicum increases with maturity in all species, with large differences between species and cultivars (Table 1.8.3, Howard, 2000). For example, β -carotene levels ranged from 18-247 µg/100 g in immature *C. annuum* cultivars, and increased to 337-800 µg/100 g in mature fruit. AA also increased with maturity with levels ranging from 102-202 mg/100 g in mature capsicums (Howard et al. 2000). Similar patterns in carotenoid and AA levels were observed with other capsicum species, including chilli (Howard et al. 2000; Marín et al. 2004). In ripe red capsicum, AA levels decreased by 24-26% with 10 to 20 days storage at room temperature, and by 16% after 20 days at 4°C (Martínez et al. 2005). In the same study, AA losses of 20-25% were reported after canning, 12% after blanching, and 13-40% after freezing.

Table 1.8.3 Natural variation and effects of season and storage on carotene (μ g/100 g) and vitamin C (mg/100 g) levels in fruiting vegetables other than tomato.

Study	Variety	Season / Growing conditions	Storage or processing
7 capsicum cultivars (including sweet and tabasco and habanero chillis). AA and carotenoids (μg RE/100 g) by HPLC Howard, 2000	<u>AA</u> Mean: 127.0 Range: 74.6-202.4 <u>RE</u> Mean: 177 Range: 0.3-336	Not determined	Not determined
Fresno de la Vega capsicum harvested in 2 consecutive years and stored for 10 or 20 days at 4°C and 20°C. Effect of blanching, freezing (with 30 d storage), drying and canning on AA also measured. Enzymatic analysis of AA. Martinez, 2005	Not determined	<u>AA</u> 1997: 148.9 1998: 159.6 Not significant	<u>AA</u> 10 days: 4°C: 153.8 (-4%) 20°C: 121.8 (-24%) 20 days: 4°C: 134.1 (-16%) 20°C: 118.8 (-26%) Processing: Blanch: 140.7 (-12%) Freeze: 95.5 (-40%) Blanch + Freeze: 138.4 (-13%) Freeze dry: 19.2 (-88%) Fry / roast then can: 119.7 / 127.7 (-25% / -20%)
87 inbred corn lines grown in 2 consecutive years. Carotenoids measured by HPLC. Chander 2008	Pool of 2 years β -carotene Mean: 44.9 Range: 1.6-172.6 <u>Total carotenoids</u> Mean: 1030 Range: 10-2250	Year: β -carotene 2004: 37.1 2005: 52.8 <u>Total carotenoids</u> 2004: 872 2005: 1188	Not determined
44 corn genotypes including sweet and dent corn. Carotenoids measured by HPLC as μg/100g dry weight. Kurilich, 1999	<u>β-carotene</u> Mean: 68 Range: 7-764 <u>Total carotenoids</u> Mean: 1041 Range: 15-3311	Not determined	Not determined
35 eggplant genotypes grown in 2 consecutive years. Total vitamin C by titration and presented mg/100g dry weight. Hanson, 2006	<u>AA</u> Mean: 86 Range: 56-129	Significant effect of year, but details of individual years not presented	Not determined
69 eggplant genotypes, including varieties of <i>S.</i> <i>melongena</i> Spanish, African and Caribbean landraces, commercial	<u>AA</u> <i>S. melongena</i> : Spanish: 1.8 (1.5-2.2) African: 1.3 (1.0-1.8) Caribbean: 2.0	Not determined	Not determined

Study	Variety	Season / Growing conditions	Storage or processing
hybrids and non-	Hybrid: 1.7 (1.6-1.9)		
hybrids, experimental	Non-hybrid: 1.5 (1.0-		
hybrids as well as 2	2.1)		
varieties of <i>S.</i>	Asian: 1.7 (1.3-2.2)		
aethiopicum and S.	Experimental: 1.8		
macrocarpon.	(1.3-2.1)		
AA by titration.	S. aethiopicum:		
Prohens, 2007	1.7-2.3		
	S. macrocarpon:		
	1.8-2.0		

The major carotenoids in corn are lutein and zeaxanthin, which are not vitamin A precursors. β -carotene is also found in corn, with levels ranging from 2-173 µg/100 g in a study of inbred lines, and 7-764 µg/100 g dry weight in a study of 44 corn types selected for variation in kernel colour, lipid and protein contents (Kurilich and Juvik 1999; Chander et al. 2008). As detailed in Table 1.8.1, boiled, frozen and canned corn has lower levels of carotene and vitamin C.

AA levels ranged from 56-129 mg/100 g in a study of 35 different eggplants (Hanson et al. 2006); these values are for dry mass and are therefore higher than those reported in food composition tables (see Table 1.8.1). In another study of 69 different eggplant varieties and hybrids the AA content ranged from 1-2 mg/100 g (Prohens et al. 2007). Carotene and vitamin C levels were minimally affected by cooking (Table 1.8.1).

In summary, there is a wide range in carotene and vitamin C levels in tomatoes, and this variability is further exaggerated by the influence of growing season, location and year. The effects of storage are variable, with some studies indicating reduced carotene and increased AA, and others showing the opposite. Other fruiting vegetables also show a large variation in nutrient composition between cultivars. Processing was associated with large reductions in vitamin C levels in both tomatoes and capsicums.

1.9. Summary of variation in nutrient composition in fruits and vegetables

From the above data, it is evident that the numerical values provided in nutrient composition tables provide only a general indication of carotene and vitamin C content in fruits and vegetables. For the majority of fruits and vegetables in this review, the vitamin C values in food composition tables were within the range reported in published literature. However, both apple and watermelon had higher vitamin C levels reported in the literature compared to that in nutrient composition tables. A likely source of this difference may be storage-associated diminution of vitamin C; in apples as much as 90% of vitamin C may be lost during storage.

Overall, these data emphasise the extensive variation in carotene and vitamin C levels that occurs between cultivars, and the additional influence of growing conditions, location and season, as well as postharvest handling and storage on nutrient composition of fruits and vegetables. These factors have a significant impact on the vitamin content of fruits and vegetables that are ultimately consumed by the Australian and New Zealand populations.

2. References

Abushita AA, Daood HG, Biacs PA (2000) Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agr Food Chem 48(6):2075–2081

Agar IT, Streif J, Bangerth F (1997) Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Postharvest Biol Tech 11:47–55

Aghdam MS, Motallebiazar A, Mostofi Y, Moghaddam JF, Ghasemnezhad M (2011) Methyl Salicylate Affects the Quality of Hayward Kiwifruits during Storage at Low Temperature. J Agr Sci 3(2):149–156

Akbudak B, Tezcan H, Eris A (2009) Evaluation of messenger plant activator as a preharvest and postharvest treatment of sweet cherry fruit under a controlled atmosphere. Int J Food Sci Nutr 60(5):374–386

Azevedo-Meleiro CH, Rodriguez-Amaya DB (2007) Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. J Agr Food Chem 55(10):4027–4033

Bermejo A, Cano A (2012) Analysis of Nutritional Constituents in Twenty Citrus Cultivars from the Mediterranean Area at Different Stages of Ripening. Food Nutr Sci 3:639–650

Caprioli I, Lafuente MT, Rodrigo MJ, Mencarelli F (2009) Influence of postharvest treatments on quality, carotenoids, and abscisic acid content of stored "spring belle" peach (prunus persica) fruit. J Agr Food Chem 57(15):7056–7063

Celik A, Ercisli S (2008) Persimmon cv. Hachiya (Diospyros kaki Thunb.) fruit: some physical, chemical and nutritional properties. Int J Food Sci Nutr 59(7-8):599–606

Chander S, Yijiang M, Yirong Z, Jianbing Y, Jiansheng L (2008) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agr Food Chem 56(15):6506–6511

Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD (2008) Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117(8):1345–1359

Davey MW, Keulemans J (2004) Determining the potential to breed for enhanced antioxidant status in Malus: mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J Agr Food Chem 52(26):8031–8038

Davey MW, Stals E, Ngoh-Newilah G+, Tomekpe K, Lusty C, Markham R, Swennen R, Keulemans J (2007) Sampling strategies and variability in fruit pulp micronutrient contents of west and central african bananas and plantains (Musa species). J Agr Food Chem 55(7):2633–2644

Dewanto V, Xianzhong W, Adom KK, Rui HL (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agr Food Chem 50(10):3010–3014

Dhuique-Mayer C, Fanciullino AL, Dubois C, Ollitrault P (2009) Effect of genotype and environment on citrus juice carotenoid content. J Agr Food Chem 57(19):9160–9168

Dhuique-Mayer C, Caris-Veyrat C, Ollitrault P, Curk F, Amiot MJ (2005) Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area. J Agr Food Chem 53(6):2140–2145

Di Vaio C, Graziani G, Marra L, Cascone A, Ritieni A (2008) Antioxidant capacities, carotenoids and polyphenols evaluation of fresh and refrigerated peach and nectarine cultivars from Italy. Eur Food Res Technol 227:1225–1231

Englberger L, Darnton-Hill I, Coyne T, Fitzgerald MH, Marks GC (2003) Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency. Food Nutr Bulletin 24(4):303–318

Erge HS, Karadeniz F (2011) Bioactive compounds and antioxidant activity of tomato cultivars. Int J Food Prop 14:968–977

Erkan M, Pekmezci M, Wang CY (2005) Hot water and curing treatments reduce chilling injury and maintain post-harvest quality of 'Valencia' oranges. Int J Food Sci Tech 40:91–96

Fanciullino AL, Cercós, nuel, Dhique, yer, Froelic, r Y, Talón, n, I, Ollitrault P, Morillon R (2008) Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. J Agr Food Chem 56(10):3628–3638

Flores FB, Sanchez-Bel P, Valdenegro M, Romojaro F, Martinez C, Egea MI (2008) Effects of a pretreatment with nitric oxide on peach (*Prunus persica* L.) storage at room temperature. Eur Food Res Tech 227:1599–1611

Franck C, Baetens M, Lammertyn J, Verboven P, Davey MW, Nicola+» BM (2003) Ascorbic acid concentration in Cv. conference pears during fruit development and postharvest storage. J Agr Food Chem 51(16):4757–4763

Gahler S, Otto K, Boehm V (2003) Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J Agr Food Chem 51(27):7962–7968

Gil MI, Tomás-Barberán FA, Hess-Pierce B, Kader AA (2002) Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agr Food Chem 50(17):4976–4982

Girard B, Kopp TG (1998) Physicochemical Characteristics of Selected Sweet Cherry Cultivars. J Agr Food Chem 46(2):471–476

González-Molina E, Moreno DA, García-Viguera C (2008) Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J Agr Food Chem 56(5):1669–1675

Gull J, Sultana B, Anwar F, Naseer R, Ashraf M, Ashrafuzzaman M (2012) Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules (Basel, Switzerland) 17(3):3165–3180

Hanson PM, Yang R, Tsou SCS, Ledesma D, Engle L, Lee T (2006) Diversity in eggplant (*Solanum melongena*) for superoxide scavenging activity, total phenolics, and ascorbic acid. J Food Compos Anal 19:594–600

Hegedüs A, Engel R, Abrankó L, Balogh E, Blázovics A, Hermán R, Halász J, Ercisli S, Pedryc A, Stefanovits-Bányai É (2010) Antioxidant and antiradical capacities in apricot

(Prunus armeniaca L.) fruits: variations from genotypes, years, and analytical methods. J Food Sci 75(9):C722–C730

Howard LR, Talcott ST, Brenes CH, Villalon B (2000) Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agr Food Chem 48(5):1713–1720

Josuttis M, carlen C, Crespo P, Nestby R, Toldam-Andersen TB, Dietrich H, Krüger E (2012) A comparison of bioactive compounds of strawberry fruit from Europe affected by genotype and latitude. J Berry Res 2:73–95

Kalt W, Forney CF, Martin A, Prior RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agr Food Chem 47(11):4638–4644

Kevers C, Pincemail J, Tabart J, Defraigne JO, Dommes J (2011) Influence of cultivar, harvest time, storage conditions, and peeling on the antioxidant capacity and phenolic and ascorbic acid contents of apples and pears. J Agr Food Chem 59(11):6165–6171

Khan AS, Singh Z, Swinny EE (2009) Postharvest application of 1-Methylcyclopropene modulates fruit ripening, storage life and quality of 'Tegan Blue' Japanese plum kept in ambient and cold storage. Int J Food Sci Tech 44:1272–1280

Khan AS, Ahmad N, Malik AU, Amjad M (2012) Cold Storage Influences the Postharvest Pericarp Browning and Quality of Litchi. Int J Agr Biol 14:389–394

Kolayli S, Kara M, Tezcan F, Erim FB, Sahin H, Ulusoy E, Aliyazicioglu R (2010) Comparative study of chemical and biochemical properties of different melon cultivars: standard, hybrid, and grafted melons. J Agr Food Chem 58(17):9764–9769

Krüger E, Dietrich H, Schöpplein E, Rasim S, Kürbel P (2011) Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biol Tech 60:31–37

Kurilich A, Juvik J (1999) Simultaneous quantification of carotenoids and tocopherols in corn kernal extracts by HPLC. J Liq Chromatogr R T 22(19):2925

Ladaniya MS, Singh SP, Wadhawan AK (2003) Response of 'Nagpur' mandarin, 'Mosambi' sweet orange and 'Kagzi' acid lime to gamma radiation. Radiat Phys Chem 67:665–675

Lata B (2007) Relationship between apple peel and the whole fruit antioxidant content: year and cultivar variation. J Agr Food Chem 55(3):663–671

Leccese A, Bureau S, Reich M, Renard MG, Audergon JM, Mennone C, Bartolini S, Viti R (2010) Pomological and nutraceutical properties in apricot fruit: cultivation systems and cold storage fruit management. Plant Foods Hum Nutr 65(2):112–120

Lester GE, Crosby KM (2002) Ascorbic acid, folic acid, and potassium content in postharvest green-flesh honeydew muskmelons: influence of cultivar, fruit size, soil type and year. J Am Soc Hort Sci 127(5):843–847

Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230(1):39–51

Lu QY, Zhang Y, Wang Y, Wang D, Lee Rp, Gao K, Byrns R, Heber D (2009) California Hass avocado: profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J Agr Food Chem 57(21):10408–10413 Mahajan PV, Goswami TK (2004) Extended storage of litchi fruit using controlled atmosphere and low temperature. J Food Process Pres 28:388–403

Manthey JA, Perkins-Veazie P (2009) Influences of harvest date and location on the levels of beta-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). J Agr Food Chem 57(22):10825–10830

Marín A, Ferreres F, Tomás-Barberán FA, Gil MI (2004) Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J Agr Food Chem 52(12):3861–3869

Martínez S, López M, González-Raurich M, Bernardo Alvarez A (2005) The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int J Food Sci Nutr 56(1):45–51

Mawamba D, Gouado I, Leng M, Touridomon IS, Mbiapo FT (2009) Steamed-Dried Squashes (Cucurbita sp.) Can Contribute to Alleviate Vitamin A Deficiency. Am J Food Tech 4(4):170–176

Milella L, Caruso M, Galgano F, Favati F, Padula MC, Martelli G (2011) Role of the cultivar in choosing Clementine fruits with a high level of health-promoting compounds. J Agr Food Chem 59(10):5293–5298

Molyneux S, Lister C, Savage G (2004) An investigation of the antioxidant properties and colour of glasshouse grown tomatoes. Int J Food Sci Nutr 55(7):537–545

Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O (2010) Mechanical and chemical properties of Gold cultivar pineapple flesh (*Ananas comosus*). Eur Food Res Technol 230:675–686

Mullen W, Stewart AJ, Lean MEJ, Gardner P, Duthie GG, Crozier A (2002) Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J Agr Food Chem 50(18):5197–5201

Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, Oota T (2004) Varietal difference in vitamin C content in the fruit of kiwifruit and other actinidia species. J Agr Food Chem 52(17):5472–5475

Oliveira C, Ferreira AC, Costa P, Guerra J, Guedes De Pinho P (2004) Effect of some viticultural parameters on the grape carotenoid profile. J Agr Food Chem 52(13):4178–4184

Oliveira DDS, Lobato AL, Ribeiro SMR, Santana ÂMC, Chaves JBP, Pinheiro-Sant'Ana HM (2010) Carotenoids and Vitamin C during Handling and Distribution of Guava (Psidium guajava L.), Mango (Mangifera indica L.), and Papaya (Carica papaya L.) at Commercial Restaurants. J Agr Food Chem 58(10):6166–6172

Periago M-J, Garcia-Alonso J, Jacob K, Olivares AB, Bernal MJ, Iniesta MD, Martinez C, Ros G (2009) Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int J Food Sci Nutr 60(8):694–708

Perkins-Veazie P, Collins JK, Davis AR, Roberts W (2006) Carotenoid content of 50 watermelon cultivars. J Agr Food Chem 54(7):2593–2597

Pincemail J, Kevers C, Tabart J, Defraigne JO, Dommes J (2012) Cultivars, culture conditions, and harvest time influence phenolic and ascorbic acid contents and antioxidant capacity of strawberry (Fragaria x ananassa). J Food Sci 77(2):C205–C210

Pirogovskaia T, Kempler C, Kitts DD, Lund ST (2012) Phenotypic diversity in antioxidant phytochemical composition among fruits from several genotypes of red raspberry (*Rubus idaeus* L.). J Berry Res 2:229–238

Prohens J, Rodriguez-Burruezo A, Raigon MD, Nuez F (2007) Total phenolic concentration and browning susceptibility in a collection of different varietal types and hybrids of eggplant: implications for breeding for higher nutritional quality and reduced browning. J Am Soc Hort Sci 132(5):638–646

Raffo A, La Malfa G, Fogliano V, Maiani G, Quaglia G (2012) Seasonal variations in antioxidant components of cherry tomatoes (*Lycopersicon esculentum* cv. Naomi F1). J Food Compos Anal 19:11–19

Raffo A, Leonardi C, Fogliano V, Ambrosino P, Salucci M, Gennaro L, Bugianesi R, Giuffrida F, Quaglia G (2002) Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J Agr Food Chem 50(22):6550–6556

Ramsaroop RES, Saulo AA (2007) Comparative consumer and physiochemical analysis of Del Monte Hawaii Gold and Smooth Cayenne pineapple cultivars. J Food Quality 30(2):135– 159

Robles-Sánchez RM, Islas-Osuna MA, Astiazarán-García H, Vázquez-Ortiz FA, Martín-Belloso O, Gorinstein S, González-Aguilar GA (2009) Quality index, consumer acceptability, bioactive compounds, and antioxidant activity of fresh-cut "ataulfo" mangoes (mangifera indica L.) as affected by low-temperature storage. J Food Sci74(3):S126–S134

Roselló S, Adalid AM, Cebolla-Cornejo J, Nuez F (2011) Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. J Sci Food Agr 91(6):1014–1021

Ruiz D, Egea J, Tomas-Barberan FA, Gil MI (2005) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agr Food Chem 53(16):6368–6374

Shin Y, Ryu JA, Liu RH, Nock JF, Polar-Cabrera K, Watkins CB (2008) Fruit quality, antioxidant contents and activity, and antiproliferative activity of strawberry fruit stored in elevated CO2 atmospheres. J Food Sci 73(6):S339–S344

Silva FJP, Gomes MH, Fidalgo F, Rodrigues JA, Almeida DPF (2010) Antioxidant properties and fruit quality during long-term storage of "Rocha" pear: effects of maturity and storage conditions. J Food Quality 33:1–20

Stadlmayr B, Nilsson E, Mouille B, Medhammar E, Burlingame B, Charrondiere U (2011) Nutrition indicator for biodiversity on food composition-A report on the progress of data availability. J Food Compos Anal 24(4-5):692–698

Thomas RH, Woods FM, Dozier WA, Ebel RC, Nesbitt M, Wilkins B, Himelrick DG (2005) Cultivar Variation in Physicochemical and Antioxidant Activity of Alabama-Grown Blackberries . Small Fruits Rev 4(2):57–71

Tian S, Jiang A, Xu Y, Wang Y (2004) Responses of physiology and quality of sweet cherry fruit to different atmospheres in storage. Food Chemistry 87:43–49

Tlili I, Hdider C, Lenucci MS, Ilahy R, Jebari H, Dalessandro G (2011a) Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J Food Compos Anal 24(7):923–928

Tlili I, Hdider C, Lenucci MS, Riadh I, Jebari H, Dalessandro G (2011b) Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. J Food Compos Anal 24(3):307–314

Tosun M, Ercisli S, Karlidag H, Sengul M (2009) Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J Food Sci 74(7):C575–C579

Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, de Vos CHR, Capanoglu E, Bovy A, Battino M (2008) Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J Agr Food Chem 56(3):696–704

Vinha AF, Barreira SVP, Castro A, Costa A, Oliveira MBPP (2013) Influence of the Storage Conditions on the Physicochemical Properties, Antioxidant Activity and Microbial Flora of Different Tomato (*Lycopersicon esculentum* L.) Cultivars. J Agr Sci 5(2):118–128

Vrhovsek U, Rigo A, Tonon D, Mattivi F (2004) Quantitation of polyphenols in different apple varieties. J Agr Food Chem 52(21):6532–6538

Wall MM (2006a) Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J Food Compos Anal 19(5):434–445

Wall MM (2006b) Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambutan (Nephelium lappaceum) cultivars grown in Hawaii. J Food Compos Anal 19(6--7):655–663

World Health Organization (1994) Safety and nutritional adequacy of irradiated food. Geneva

Zhou C, Zhao D, Sheng Y, Tao J, Yang Y (2011) Carotenoids in fruits of different persimmon cultivars. Molecules 16(1):624–636